	Minimum Screening Value		PV	V-1		PW-2				
Chemical Name	(μg/L)		2nd Round	3rd Round	4th Round	1st Round	2nd Round	3rd Round	4th Round	
METALS	* 0 /		(ug	z/L)			(ug	z/L)		
ALUMINUM	50	ND	ND	ND		ND	ND	ND	ND	
ANTIMONY	6	ND	ND	ND		ND	ND	ND	ND	
ARSENIC	5	ND	ND	ND		1	ND	1	2	
BARIUM	1120	ND	ND	ND		ND	1	2	ND	
BERYLLIUM	0.0203	ND	ND	ND		ND	ND	ND	ND	
CADMIUM	5	ND	2	ND		ND	ND	ND	ND	
CALCIUM	-	15000	15000	14300		21400	24000	21600	19900	
CHROMIUM	80	ND	ND	ND		ND	ND	ND	ND	
COBALT	960	ND	ND	ND		ND	ND	ND	ND	
COPPER	592	ND	ND	ND		3	9	3	ND	
IRON	300	7	ND	30		24	240	20	ND	
LEAD	5	ND	ND	3J		ND	7	ND	ND	
MAGNESIUM	-	4680	4800	4600		5750	6300	5840	5610	
MANGANESE	50	ND	ND	1		2	6	2	1	
MERCURY	2	ND	ND	ND		ND	ND	ND	ND	
NICKEL	100	ND	ND	ND		ND	ND	ND	ND	
POTASSIUM	-	ND	ND	600		ND	600	1000	900	
SELENIUM	50	ND	ND	ND		2	ND	ND	ND	
SILICON ^b	-		11500	10800			11800	10500	9970	
SILVER	80	ND	ND	ND		ND	ND	ND	ND	
SODIUM	-	5240	5340	5140		5470	5500	5890	5470	
THALLIUM	0.5	ND	2	ND		1	ND	ND	ND	
VANADIUM	112	ND	ND	2		ND	ND	ND	2	
ZINC	4800	42	ND	62		35	80	33	26	
GENERAL CHEMISTRY				1				1		
pН	6.5-8.5	7.4	7.77 J	7.1		7.39	7.39 J	7	6.8	
Carbonate, µg/L CaCO ₃	-	ND	ND	ND		ND	ND	ND	ND	
Bicarbonate, μg/L CaCO3	-	56600	57500	56000		77500	80700	80000	77000	
Hardness, μg/L CaCO3	-	56700		54600						
Conductivity, μmhos/cm	-	132	134	130		172	177	180	170	
TDS, μg/L	500000	87000	59000	61000		106000	95000	110000	97000	
Turbidity, NTU	-	0.05	ND	ND		0.08	ND	0.18	0.1	
Fluoride	960	ND	ND	ND		ND	ND	ND	ND	
Chloride	250000	2100	2200	2000		2500	2100	1800	1700	
Nitrate (as N)	5780	713	726	720		1280	1910	930	830	
Nitrite (as N)	487	ND	ND	ND		ND	ND	ND	ND	
Sulfate	250000	6200	6800	6200		9000	7400	8500	6600	
ORGANICS				175	1			175		
BIS(2-ETHYLHEXYL)PHTHALATE		ND	ND	ND		ND	6.7	ND	ND	
DIETHYLPHTHALATE	12800	ND	ND	ND		ND	ND	ND	ND	
1,3-DICHLOROBENZENE	720	ND	ND	ND	1	ND	ND	ND	ND	
Analysis 524.2	4.54	NID	l vib	NID		N.TD	l vib	NID	N.T.D.	
BENZENE 12 DIGH OROBENZENE	1.51	ND	ND	ND		ND	ND	ND	ND	
1,3-DICHLOROBENZENE	720	ND	ND	ND		ND	ND	ND	ND	
1,3,5-TRIMETHYLBENZENE	-	ND	ND	ND	l .	ND	ND	ND	ND	
Analysis 525 Endrin	2	ND	ND	ND		ND	ND	ND	ND	
EHQFIH	4	ND	ND	ND		ND	ND	ND	ND	

ND - Analyte was Not Detected.

Shading indicates exceedance of the screening value. Exceedance of a

screening value does not necessarily indicate a significant risk or health hazard, only the need to retain the compound for further evaluation.

^aValue represents minimum potential ARAR in Table 4-3.

^bThe analytical laboratory did not analyze for Silicon during the 1st quarterly sampling period.

	Minimum Screening Value		PV	V-3		PW-4				
Chemical Name	(μg/L)	1st Round	2nd Round		4th Round	1st Round	2nd Round		4th Round	
METALS	V 3 /			z/L)	ı		(ug			
ALUMINUM	50	ND	30	ND	ND	ND	ND	ND	ND	
ANTIMONY	6	ND	ND	ND	ND	ND	ND	ND	ND	
ARSENIC	5	ND	ND	ND	ND	ND	ND	ND	ND	
BARIUM	1120	ND	ND	2	ND	1	1	2	ND	
BERYLLIUM	0.0203	ND	ND	ND	ND	ND	ND	ND	ND	
CADMIUM	5	ND	ND	ND	ND	ND	ND	ND	ND	
CALCIUM	-	7200	8200	8040	6000	41000	44000	42100	42300	
CHROMIUM	80	ND	ND	ND	ND	ND	ND	ND	ND	
COBALT	960	ND	ND	ND	ND	ND	ND	ND	ND	
COPPER	592	ND	ND	ND	ND	ND	ND	ND	ND	
IRON	300	12	ND	ND	ND	64	67	80	60	
LEAD	5	ND	ND	2	ND	ND	ND	ND	ND	
MAGNESIUM	-	1210	1400	1370	1030	13300	14000	13400	13600	
MANGANESE	50	ND	ND	1	ND	43	54	47	44	
MERCURY	2	ND	ND	ND	ND	ND	ND	ND	ND	
NICKEL	100	ND	ND	ND	ND	ND	ND	ND	ND	
POTASSIUM	-	ND	ND	600	ND	1000	500	1300	1100	
SELENIUM	50	ND	ND	ND	ND	1	ND	ND	ND	
SILICON ^b	-		7800	6890	6290		12000	11500	11200	
SILVER	80	ND	ND	ND	ND	ND	ND	ND	ND	
SODIUM	-	3660	4000	3750	3360	10400	11000	10300	10500	
THALLIUM	0.5	ND	2	ND	ND	ND	ND	ND	ND	
VANADIUM	112	ND	ND	ND	ND	ND	ND	ND	ND	
ZINC	4800	90	25	28	21	20	ND	18	22	
GENERAL CHEMISTRY										
pН	6.5-8.5	6.22	6.57 J	6.3	6.8	7.01	7.06 J	6.8	6.6	
Carbonate, µg/L CaCO ₃	-	ND	ND	ND	ND	ND	ND	ND	ND	
Bicarbonate, μg/L CaCO3	-	15900	22300	20000	36000	164000	166000	160000	160000	
Hardness, μg/L CaCO3	-	23000	26200	26000	19000				160000	
Conductivity, μmhos/cm	-	70.2	75.4	78	62	345	347	330	330	
TDS, μg/L	500000	52000	39000	48000J	48000	201000	185000	210000	190000	
Turbidity, NTU	-	0.11	ND	ND	ND	0.24	0.38	0.76	0.24	
Fluoride	960	ND	ND	ND	ND	ND	ND	ND	ND	
Chloride	250000	2500	2700	3200	2200	3000	3200	3000	2700	
Nitrate (as N)	5780	2130	2100	2100	1600	530	503	530	560	
Nitrite (as N)	487	ND	ND	ND	ND	ND	ND	ND	ND	
Sulfate	250000	5100	6000	4900	4400	17000	18400	18000	16000	
ORGANICS				175						
BIS(2-ETHYLHEXYL)PHTHALATE		ND	ND	ND	ND	ND	ND	ND	ND	
DIETHYLPHTHALATE	12800	ND	ND	ND	ND	ND	ND	ND	ND	
1,3-DICHLOROBENZENE	720	ND	ND	ND	ND	ND	ND	ND	ND	
Analysis 524.2	4.54	NID	l vib	NID	N.D.	N.ID	l vib	N.D.	N.T.D.	
BENZENE 12 DIGH OROBENZENE	1.51	ND	ND	ND	ND	ND	ND	ND	ND	
1,3-DICHLOROBENZENE	720	ND	ND	ND	ND	ND	ND	ND	ND	
1,3,5-TRIMETHYLBENZENE	-	ND	ND	ND	ND	ND	ND	ND	ND	
Analysis 525 Endrin	2	ND	ND	ND	ND	ND	ND	ND	ND	
EHQFIH	<u>L</u>	ND	ND	ND	ND	ND	ND	ND	ND	

ND - Analyte was Not Detected.

^aValue represents minimum potential ARAR in Table 4-3.

^bThe analytical laboratory did not analyze for Silicon during the 1st

	Minimum Screening Value		PV	V-5		PW-6				
Chemical Name	(μg/L)	1st Round			4th Round	1st Round	2nd Round		4th Round	
METALS	4 6 7		(us	z/L)			(ug	z/L)		
ALUMINUM	50	70	120	40		20	20	30		
ANTIMONY	6	ND	ND	ND		ND	ND	ND		
ARSENIC	5	2	2	1		4	3	4		
BARIUM	1120	92	93	83		43	88	89		
BERYLLIUM	0.0203	ND	ND	ND		ND	ND	ND		
CADMIUM	5	ND	ND	ND		2	ND	ND		
CALCIUM	-	26700	27000	27000		7970	19000	14800		
CHROMIUM	80	ND	ND	ND		ND	ND	ND		
COBALT	960	ND	ND	ND		ND	ND	ND		
COPPER	592	ND	ND	ND		ND	ND	ND		
IRON	300	91	170	80		270	590	2040		
LEAD	5	ND	ND	ND		ND	2	3J		
MAGNESIUM	-	11000	12000	11200		2760	7000	5280		
MANGANESE	50	16	19	17		20	55	60		
MERCURY	2	ND	ND	ND		ND	ND	ND		
NICKEL	100	ND	ND	ND		ND	ND	ND		
POTASSIUM	-	1400	600	1500		1000	1300	1800		
SELENIUM	50	ND	ND	ND		4	ND	ND		
SILICON ^b	-		10000	9720			11000	8480		
SILVER	80	ND	ND	ND		ND	ND	ND		
SODIUM	-	25300	26000	24800		68400	37000	49800		
THALLIUM	0.5	ND	ND	ND		ND	ND	ND		
VANADIUM	112	ND	ND	ND		2	ND	ND		
ZINC	4800	55	ND	35		91	190	268		
GENERAL CHEMISTRY										
pH	6.5-8.5	8.13	7.91 J	7.6		8.52	7.8 J	7.8		
Carbonate, µg/L CaCO₃	-	ND	ND	ND		ND	ND	ND		
Bicarbonate, μg/L CaCO3	-	160000	160000	160000		179000	159000	170000		
Hardness, μg/L CaCO3	-			114000				58700		
Conductivity, μmhos/cm	-	298	316	320		317	284	320		
TDS, μg/L	500000	193000	176000	210000		208000	151000	190000		
Turbidity, NTU	-	1.09	2.1	1.2		2.3	3.6	4.9		
Fluoride	960	250	250	220		300	170	160		
Chloride	250000	1900	1900	2700		2900	2300	2100		
Nitrate (as N)	5780	ND	ND	12		ND	ND	4500		
Nitrite (as N)	487	ND	ND	ND		ND	ND	ND		
Sulfate	250000	10800	11000	11000		ND	ND	ND		
ORGANICS	-									
BIS(2-ETHYLHEXYL)PHTHALATE		ND	1.8	ND		ND	ND	ND		
DIETHYLPHTHALATE	12800	ND	1.2	ND		ND	ND	ND		
1,3-DICHLOROBENZENE	720	ND	ND	ND		ND	ND	ND		
Analysis 524.2	4 =		1	175	1			175		
BENZENE	1.51	ND	ND	ND		ND	ND	ND		
1,3-DICHLOROBENZENE	720	ND	ND	ND		ND	ND	ND		
1,3,5-TRIMETHYLBENZENE	-	ND	ND	ND		ND	ND	ND		
Analysis 525	2	VID.	NID	VID		NID	NID	VID		
Endrin	2	ND	ND	ND		ND	ND	ND		

ND - Analyte was Not Detected.

 $^{^{\}rm a}{\rm Value}$ represents minimum potential ARAR in Table 4-3.

^bThe analytical laboratory did not analyze for Silicon during the 1st

	Minimum Screening Value		PV	N -7		PW-8				
Chemical Name	(μg/L)		2nd Round	3rd Round	4th Round	1st Round	2nd Round	3rd Round	4th Round	
METALS	V 3 /			z/L)			(ug			
ALUMINUM	50	60	90	60		50	ND (ND		
ANTIMONY	6	ND	ND	ND		ND	ND	ND		
ARSENIC	5	5	11	5		19	12	19		
BARIUM	1120	7	14	6		78	77	79		
BERYLLIUM	0.0203	ND	ND	ND		ND	ND	ND		
CADMIUM	5	ND	ND	ND		ND	ND	ND		
CALCIUM	-	20100	22000	20700		19000	20000	20200		
CHROMIUM	80	ND	ND	ND		ND	ND	ND		
COBALT	960	ND	ND	ND		ND	ND	ND		
COPPER	592	ND	5	ND		3	ND	3		
IRON	300	410	4000	110		217	34	40		
LEAD	5	ND	4	ND		ND	1	ND		
MAGNESIUM	-	7240	7700	7320		7140	7600	7440		
MANGANESE	50	54	416	26		33	9	14		
MERCURY	2	ND	ND	ND		ND	ND	ND		
NICKEL	100	ND	ND	ND		ND	ND	ND		
POTASSIUM	-	1600	1400	2200		400	500	1100		
SELENIUM	50	1	ND	1		ND	ND	ND		
SILICON ^b	- 30	1				ND				
		NED	11000	9720		NID	10000	8550		
SILVER	80	ND	ND	ND		ND	ND	ND		
SODIUM	-	7110	7600	6980		35600	35000	29100		
THALLIUM	0.5	ND	1	ND		ND	3	ND		
VANADIUM	112	4	ND	ND		3	ND	ND		
ZINC	4800	70	240	46		123	180	181		
GENERAL CHEMISTRY			1	1	1		1			
pН	6.5-8.5	8.23	7.95 J	7.7		8.24	7.41 J	8.00		
Carbonate, µg/L CaCO ₃	-	ND	ND	ND		ND	ND	ND		
Bicarbonate, μg/L CaCO3	-	95800	100000	95000		151000	157000	140000		
Hardness, μg/L CaCO3	-			81800		76800	80200	81100		
Conductivity, μmhos/cm	-	184	195	190		284	276	280		
TDS, μg/L	500000	105000	104000	96000		166000	148000	170000		
Turbidity, NTU	-	1.5	26	1.3		2.4	ND	0.27		
Fluoride	960	140	140	ND		ND	ND	ND		
Chloride	250000	1000	1200	ND		1500	1600	1500		
Nitrate (as N)	5780	26	ND	48		203	136	240		
Nitrite (as N)	487	ND	ND	ND		ND	ND	ND		
Sulfate	250000	2700	3600	4200		ND	3300	ND		
ORGANICS										
BIS(2-ETHYLHEXYL)PHTHALATE	6	ND	ND	ND		ND	ND	ND		
DIETHYLPHTHALATE	12800	ND	ND	ND		ND	ND	ND		
1,3-DICHLOROBENZENE	720	ND	ND	ND		ND	ND	ND		
Analysis 524.2										
BENZENE	1.51	ND	ND	ND		ND	ND	ND		
1,3-DICHLOROBENZENE	720	ND	1.3	ND		ND	ND	ND		
1,3,5-TRIMETHYLBENZENE	-	ND	ND	ND		ND	ND	ND		
Analysis 525										
Endrin	2	0.3	ND	ND		ND	ND	ND		

ND - Analyte was Not Detected.

^aValue represents minimum potential ARAR in Table 4-3.

^bThe analytical laboratory did not analyze for Silicon during the 1st

	Minimum Screening Value		PV	V-9		PW-10				
Chemical Name	(μg/L)	1st Round	2nd Round		4th Round	1st Round	2nd Round		4th Round	
METALS	V-8 -/			z/L)				2/L)		
ALUMINUM	50	ND	ND	ND	ND	ND	ND	ND	ND	
ANTIMONY	6	ND	ND	ND	ND	ND	ND	ND	ND	
ARSENIC	5	ND	ND	ND	1	ND	ND	ND	ND	
BARIUM	1120	2	2	2	1	2	2	3	2	
BERYLLIUM	0.0203	ND	ND	ND	ND	ND	ND	ND	ND	
CADMIUM	5	ND	ND	ND	ND	ND	ND	ND	ND	
CALCIUM	-	13300	14000	14000	12300	9660	12000	12700	8580	
CHROMIUM	80	ND	ND	ND	ND	ND	ND	ND	ND	
COBALT	960	ND	ND	ND	ND	ND	ND	ND	ND	
COPPER	592	ND	ND	ND	ND	24	33	6	7	
IRON	300	ND	ND	ND	ND	1040	890	360	630	
LEAD	5	ND	1	1J	ND	ND	ND	ND	1	
MAGNESIUM	-	2900	3000	3120	2270	2230	2500	2720	2260	
MANGANESE	50	ND	ND	ND	ND	7	8	3	2	
MERCURY	2	ND	ND	ND	ND	ND	ND	ND	ND	
NICKEL	100	ND	ND	ND	ND	ND	ND	ND	ND	
POTASSIUM	-	ND	ND	700	500	ND	ND	800	700	
SELENIUM	50	1	ND	ND	ND	1	ND	ND	ND	
SILICON ^b	-		8300	7880	6210		7370	6770	6350	
SILVER	80	ND	ND	ND	ND	ND	ND	ND	ND	
SODIUM	-	3640	3700	3860	3470	3570	3750	4000	3410	
THALLIUM	0.5	ND	2	ND	ND	ND	ND	ND	ND	
VANADIUM	112	ND	ND	ND	ND	ND	ND	ND	ND	
ZINC	4800	ND	5	5	6	8	14	6	ND	
GENERAL CHEMISTRY				-				•		
pH	6.5-8.5	7.18	7.17 J	6.9	7.2	6.61	6.44 J	6.5	6.6	
Carbonate, µg/L CaCO ₃	-	ND	ND	ND	ND	ND	ND	ND	ND	
Bicarbonate, μg/L CaCO3	-	47700	48400	46000	39000	33400	42600	39000	27000	
Hardness, μg/L CaCO3	-		46200	47800	40000				31000	
Conductivity, μmhos/cm	-	109	111	110	98	86.1	96.9	110	81	
TDS, μg/L	500000	82000	56000	80000	60000	74000	53000	64000	38000	
Turbidity, NTU	-	ND	ND	ND	ND	9.1	0.84	1.6	3.1	
Fluoride	960	ND	ND	ND	ND	ND	ND	ND	ND	
Chloride	250000	2600	2400	2500	2200	2500	2600	2500	1900	
Nitrate (as N)	5780	667	669	690	2700	876	516	2900	1100	
Nitrite (as N)	487	ND	ND	ND	ND	ND	ND	ND	ND	
Sulfate	250000	4600	3600	4800	3900	4300	4300	5700	5300	
ORGANICS										
BIS(2-ETHYLHEXYL)PHTHALATE		ND	ND	ND	ND	ND	ND	ND	ND	
DIETHYLPHTHALATE	12800	ND	ND	1.5	ND	ND	ND	ND	ND	
1,3-DICHLOROBENZENE	720	1.3	ND	ND	ND	ND	ND	ND	ND	
Analysis 524.2			1	1			1	ľ		
BENZENE	1.51	ND	ND	ND	ND	ND	0.6	ND	ND	
1,3-DICHLOROBENZENE	720	ND	ND	ND	ND	ND	ND	ND	ND	
1,3,5-TRIMETHYLBENZENE	-	ND	ND	ND	ND	ND	0.7	ND	ND	
Analysis 525	_									
Endrin	2	ND	ND	ND	ND	ND	ND	ND	ND	

ND - Analyte was Not Detected.

 $^{^{\}rm a}{\rm Value}$ represents minimum potential ARAR in Table 4-3.

^bThe analytical laboratory did not analyze for Silicon during the 1st

	Minimum Screening Value		PW	7-12		PW-13				
Chemical Name	(μg/L)	1st Round	2nd Round	3rd Round	4th Round	1st Round	2nd Round		4th Round	
METALS	V O /		(us	z/L)			(ug	z/L)		
ALUMINUM	50	ND	ND	ND	ND	20	ND	ND	ND	
ANTIMONY	6	ND	ND	ND	ND	ND	ND	ND	ND	
ARSENIC	5	ND	ND	ND	ND	ND	ND	ND	ND	
BARIUM	1120	2	2	2	2	2	2	2	2	
BERYLLIUM	0.0203	ND	ND	ND	ND	ND	ND	ND	ND	
CADMIUM	5	ND	ND	ND	ND	ND	ND	ND	ND	
CALCIUM	-	12200	13000	14700	11800	12700	13000	13200	11200	
CHROMIUM	80	ND	ND	ND	ND	ND	ND	ND	ND	
COBALT	960	ND	ND	ND	ND	ND	ND	ND	ND	
COPPER	592	3	ND	ND	ND	4	19	7	3	
IRON	300	210	30	40	20	ND	ND	ND	ND	
LEAD	5	ND	ND	ND	ND	ND	ND	1J	ND	
MAGNESIUM	-	2140	2310	2670	2030	2420	2600	2640	2210	
MANGANESE	50	6	1	1	1	ND	ND	ND	ND	
MERCURY	2	ND	ND	ND	ND	ND	ND	ND	ND	
NICKEL	100	ND	ND	ND	ND	ND	ND	ND	ND	
POTASSIUM	-	ND	ND	700	600	ND	ND	800	500	
SELENIUM	50	1	ND	ND	ND	ND	ND	ND	ND	
SILICON ^b	-		6300	6410	5780		6900	6560	5930	
SILVER	80	ND	ND	ND	ND	ND	ND	ND	ND	
SODIUM	-	3150	3700	3780	3120	3510	3600	3940	3310	
THALLIUM	0.5	ND	2	ND	ND	ND	1	ND	ND	
VANADIUM	112	ND	ND	ND	ND	ND	ND	ND	ND	
ZINC	4800	5	ND	4	5	11	38	6	6	
GENERAL CHEMISTRY										
pH	6.5-8.5	7.15	7.4 J	6.8	6.8	7.01	6.43 J	6.9	6.9	
Carbonate, µg/L CaCO₃	-	ND	ND	ND	ND	ND	ND	ND	ND	
Bicarbonate, μg/L CaCO3	-	39900	42000	47000	38000	40400	43700	41000	33000	
Hardness, μg/L CaCO3	-			47700	38000		43300	43800	37000	
Conductivity, μmhos/cm	-	98.1	104	120	92	98.9	103	110	94	
TDS, μg/L	500000	71000	50000	69000	72000	70000	59000	71000	60000	
Turbidity, NTU	-	1.75	0.79	0.26	0.1	0.05	ND	0.29	ND	
Fluoride	960	ND	ND	ND	ND	ND	ND	ND	ND	
Chloride	250000	2800	2400	2500	1600	2200	2100	2400	1800	
Nitrate (as N)	5780	756	751	1100	860	1290	691	1900	1200	
Nitrite (as N)	487	ND	ND	ND	ND	ND	ND	ND	ND	
Sulfate	250000	3800	3700	4500	2500	6400	4900	4200	5900	
ORGANICS								1		
BIS(2-ETHYLHEXYL)PHTHALATE		ND	ND	ND	ND	ND	ND	ND	ND	
DIETHYLPHTHALATE	12800	ND	ND	ND	ND	ND	ND	1.2	ND	
1,3-DICHLOROBENZENE	720	ND	ND	ND	ND	ND	ND	ND	ND	
Analysis 524.2				1			1			
BENZENE	1.51	ND	ND	ND	ND	ND	ND	ND	ND	
1,3-DICHLOROBENZENE	720	ND	ND	ND	ND	ND	ND	ND	ND	
1,3,5-TRIMETHYLBENZENE	-	ND	ND	ND	ND	ND	ND	ND	ND	
Analysis 525		NID	l vib	ND	N.D.	N.ID	N.D.	N.D.	ND	
Endrin	2	ND	ND	ND	ND	ND	ND	ND	ND	

ND - Analyte was Not Detected.

Shading indicates exceedance of the screening value. Exceedance ε screening value does not necessarily indicate a significant risk or health hazard, only the need to retain the compound for further evaluations of the compound for further evaluations.

 $^{^{\}rm a}{\rm Value}$ represents minimum potential ARAR in Table 4-3.

^bThe analytical laboratory did not analyze for Silicon during the 1st

	Minimum Screening Value ^a PW-14					PW-15				
Chemical Name	(μg/L)	1st Round	2nd Round	3rd Round	4th Round	1st Round	2nd Round	3rd Round	4th Round	
METALS	* 0 /		(ug	z/L)			(ug	z/L)		
ALUMINUM	50	ND	ND	ND		130	2560	130		
ANTIMONY	6	ND	ND	ND		ND	ND	ND		
ARSENIC	5	ND	ND	ND		2	7	2		
BARIUM	1120	18	18	18		27	64	28		
BERYLLIUM	0.0203	ND	ND	ND		ND	ND	ND		
CADMIUM	5	ND	ND	ND		ND	ND	ND		
CALCIUM	-	1330	1400	1350		10300	19000	10900		
CHROMIUM	80	ND	ND	ND		ND	ND	ND		
COBALT	960	ND	ND	ND		ND	ND	ND		
COPPER	592	2	ND	45		13	84	10		
IRON	300	89	67	90		329	5400	310		
LEAD	5	ND	ND	4J		ND	16	1		
MAGNESIUM	-	480	480	460		3610	5200	3540		
MANGANESE	50	2	2	3		16	99	15		
MERCURY	2	ND	ND	ND		ND	ND	ND		
NICKEL	100	ND	ND	ND		ND	ND	ND		
POTASSIUM	-	600	ND	600		700	1100	1000		
SELENIUM	50	2	1	ND		ND	ND	1		
SILICON ^b	-		4400	4550			8800	6660		
SILVER	80	ND	ND	ND		ND	ND	ND		
SODIUM	-	139000	148000	143000		38400	20000	38400		
THALLIUM	0.5	ND	2	ND		ND	2	ND		
VANADIUM	112	ND	ND	ND		2	9	ND		
ZINC	4800	17	ND	36		70	1320	27		
GENERAL CHEMISTRY			•				•	•		
pH	6.5-8.5	9	9.02 J	9		8.91	8.52 J	8.4		
Carbonate, µg/L CaCO ₃	-	37000	36600	35000		7900	ND	ND		
Bicarbonate, μg/L CaCO3	-	289000	286000	280000		102000	113000	130000		
Hardness, μg/L CaCO3	-			5270				42000		
Conductivity, µmhos/cm	_	579	585	580		201	215	240		
TDS, μg/L	500000	333000	306000	330000		133000	78000	150000J		
Turbidity, NTU	-	0.46	0.27	ND		1.8	31	2		
Fluoride	960	610	540	480		100	ND	110		
Chloride	250000	1900	2100	1900		1500	1900	1400		
Nitrate (as N)	5780	14	ND	16		15	ND	ND		
Nitrite (as N)	487	ND	ND	ND		ND	ND	ND		
Sulfate	250000	ND	ND	ND		ND	ND	ND		
ORGANICS			•	•				•		
BIS(2-ETHYLHEXYL)PHTHALATI	6	ND	ND	ND		ND	ND	ND		
DIETHYLPHTHALATE	12800	ND	ND	ND		ND	ND	ND		
1,3-DICHLOROBENZENE	720	ND	ND	ND		ND	ND	ND		
Analysis 524.2										
BENZENE	1.51	ND	ND	ND		ND	ND	ND		
1,3-DICHLOROBENZENE	720	ND	ND	ND		ND	ND	ND		
1,3,5-TRIMETHYLBENZENE	-	ND	ND	ND		ND	ND	ND		
Analysis 525										
Endrin	2	ND	ND	ND		ND	ND	ND		

ND - Analyte was Not Detected.

^aValue represents minimum potential ARAR in Table 4-3.

^bThe analytical laboratory did not analyze for Silicon during the 1st